Algebra 1

Lesson 8.6B

Write and Graph Exponential Decay Functions

Exponential Decay: A function that decreases by the same percent every time.

- The function does not have a constant rate of change.
- The graph decreases gradually at first and then more rapidly as x gets larger.

Decay Function

$$y = C(1-r)^{t}$$

$$\begin{cases} r = aecay \ rate \\ t = time \ period \\ C = beginning \ amount \\ 1 - r = decay \ factor \end{cases}$$

Note – the decay factor is less than 1

Example 1.

Classify the models below as exponential growth or exponential decay. Identify the growth or decay factor and the percent increase or decrease per time period.

(a)
$$y = 12(1.12)^3$$

(b)
$$y = 4(.50)$$

(c)
$$y = 7\left(\frac{3}{4}\right)^t$$

(a)
$$y = 12(1.12)^{t}$$
 (b) $y = 4(.50)^{t}$ (c) $y = 7\left(\frac{3}{4}\right)^{t}$ (d) $y = 25\left(\frac{5}{4}\right)^{t}$ Growth

Example 2.

Match the function with the correct graph.

 $y = 3(1.2)^t$ (a)

y = 3x + 2(b)

(c) $y = 6(.75)^{i}$

Example 3. Depreciation.

You bought a used car for \$18,000. The value of the car will be less each year because of depreciation. The car depreciates at a rate of 12% per year.

- (a) Write an exponential decay model to represent this situation.
- (b) Estimate the value of your car after 8 years.

THE CAR IS WOPPH \$6,473.42 after Cell Phones. & Years.

 $y=18,000(1-.12)^{t}$ $y=18,000(.88)^{t}$ $y=18,000(.88)^{8}$ $y=18,000(.88)^{8}$

Example 4. Cell Phones.

You purchase a cell phone for \$125. The value of the cell phone decreases by 20% annually.

(a) Write an exponential decay model to represent this situation.

 $y=125(1-.2)^{t}$ $y=125(0.8)^{t}$

(b) Estimate the value of your phone after 3 years.
$$u = 125(0.8)^3$$

 $y = 125(0.8)^3$

THE PHINE IS WORTH \$64 after 3 years.

Algebra 1

Lesson 8.5B

Write and Graph Exponential Growth Functions

Exponential Growth: A function that grows by the same percent every time. (Doubles, Triples, etc.)

- The function does not have a constant rate of change.
- The graph increases gradually at first and then more rapidly as x gets larger.

Growth Function

Note – the growth factor is greater than 1

 $1 + r = Growth\ factor$

Example 1. Investment Problem

8% → 0.08

You deposit \$500 in an account that pays 8% annual interest compounded yearly.

(a) Write a model for this investment problem using t as the time period.

- (b) Find the balance in the account after 6 years.
- Afrex 6 Years, You Have \$793.44 (c) Find the balance in the account after 20 years.

Aprel 20 years, you have \$2,330.48

Example 2.

The owner of an original 1938 comic book bought it for \$55 in 1980. The value of the comic book increased at a rate of 2.8% per year.

- (a) Write a model giving the value of the comic book after t years.
- (b) What was the approximate value of the comic book in the year 2005?
- In 2005, it is wearth \$109.70. (c) What is the approximate value of the comic book today?

TOPAY, IT IS WORTH \$136.82.

Example 3.

In the year 2001 there were about 600 million computers in use worldwide. This number is increasing at a rate of 10% per year.

MORLDWIDE

(a) Write a model giving the number of computers after t years.

MILLONS

(b) How many computers were there worldwide in the year 2008? In 2008, THERE WERE 1,169,230,260 computers

(c) How many computers are there today? Topay, THERE are 1,883,057,026 computers