Warm-Up

Fill out the information from page 710 that introduces the new vocabulary (radical expression, radical function, square root function, parent square root function):

KEY CONCEPT

For Your Notebook

Graphs of Square Root Functions

To graph a function of the form $y = a\sqrt{x - h} + k$, you can follow these steps.

STEP 1 Sketch the graph of $y = a\sqrt{x}$. The graph of $y = a\sqrt{x}$ starts at the origin and passes through the point (1, a).

STEP 2 Shift the graph |h| units horizontally (to the right if h is positive and to the left if h is negative) and |k| units vertically (up if k is positive and down if k is negative).

GRAPHS OF SQUARE ROOT FUNCTIONS Examples 1 and 2 illustrate the following:

• When |a| > 1, the graph of $y = a\sqrt{x}$ is a vertical stretch of the graph of $y = \sqrt{x}$. When 0 < |a| < 1, the graph of $y = a\sqrt{x}$ is a vertical shrink of the graph of $y = \sqrt{x}$.

• When a < 0, the graph of $y = a\sqrt{x}$ is the reflection in the x-axis of the graph of $y = |a|\sqrt{x}$.

For each of the following functions: complete the table, graph each function, identify the domain and range, and compare it to the parent square root function.

1.
$$y = \sqrt{x}$$

Domain: _	XZO
Range:	y > 0

x	У
0	0
1	
4	2
9	3
16	4

2.
$$y = -2\sqrt{x}$$

Domain: XZO

Range: V=O

VERTICAL STRETCH

REFLECTION OVER X-AXIS

x	У
0	0
<1	-2
4	-4
9	-6
16	-8

Find the domain and range for each of the following square root functions. Sketch a graph to help you find the domain and range.

(a)
$$y = -4\sqrt{x}$$

(b)
$$y = \sqrt{x-2}$$

c)
$$v = \sqrt{x+5}$$

$$y = \sqrt{x-4}$$

New: Pg. 713 #4,13,15,16,18,24,31,34

- VERT. TROUBLESTEN DOWN 2