Algebra 1

Lesson 10.6B

Solve Quadratic Equations by the Quadratic Formula

NOTES:

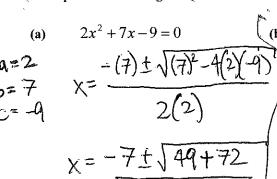
The Quadratic Formula

Given a quadratic equation in standard form $ax^2 + bx + c = 0$ then the solutions to the equation can be found from:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Need to see a few examples?

Example 1. Solve using the Quadratic Formula.



$$2x^2 - 7 = x$$

$$-x - x$$

$$4x^{2} + 3x = 1$$

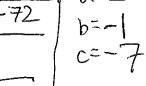
$$4x^{2} + 3x - (=0)$$

$$0 = 4$$

$$6 = 3$$

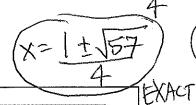
$$x = -\frac{(3) \pm \sqrt{(3)^2 - 4(4)(-$$

$$x = -7 \pm \sqrt{49 + 72}$$
 4



$$\chi = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-7)^2}}{2(2)}$$

$$x = -\frac{7 \pm 11}{4} \left(x = 1, -4.5\right)$$



x≈2.14,-1.64

CONCEPT SUMMAR		For Your Notebook
Methods for Solving Quadratic Equations		
Method	Lesson(s)	When to Use
Factoring	9.4-9.8	Use when a quadratic equation can be factored easily.
Caaphing	10.3	Use when approximate solutions are adequate.
Finding square roots	10.4	Use when solving an equation that can be written in the form $x^2 = d$.
Completing the square	10.5	Can be used for any quadratic equation $ax^2 + bx + c = 0$ but is simplest to apply when $a = 1$ and b is an even number.
Quadratic formula	10.6	Can be used for <i>any</i> quadratic equation.

Need some help determining when it is best to use each of these methods?

Example 2. Solve the quadratic equations using ANY method. Choose wisely to save time!

(a)
$$x^{2} + 6x + 5 = 0$$

 $(x + 5) = 0$
 $(x + 5) = 0$
 $(x + 5) = 0$
 $(x + 5) = 0$

(b)
$$\sqrt{x^2 + 16}$$

 $x^2 - 4x + 1 = 0$

(d)

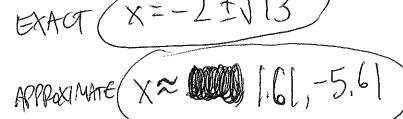
(c)
$$x^2 + 4x = 9$$

 $x^2 + 4x + 4 = 9 + 4$
 $(x + 2)^2 = (13)$
 $x + 2 = \pm \sqrt{13}$

$$x = -(-4) \pm \sqrt{(-4)^2 - 4(i)(1)}$$

$$2(1)$$

$$x = 4 + \sqrt{16 - 4}$$



$$x=4+\sqrt{12}$$
 EXACT

Assignment New: Pg. 674 #13 – 17, 34 – 42 (evens) ×≈3.73,.27

Review:

Solve by completing the square.

1.
$$2n^2 - 6n - 8 = 0$$

$$2. 3x^2 + 12x = 18$$

APPROXIMATE